References

- 1. Collet, J.P. et al. (2021). Eur Heart J 42(14), 1289 367
- 2. Giannitsis, E. et al. (2021). Clin Res Cardiol, doi: 10.1007/s00392-021-01821-2
- 3. Ambavane, A. et al. (2017). PLoS One 12(11), e0187662
- 4. Thygesen, K. et al. (2018). Circulation 138(20), e618 51
- 5. Reichlin, T. et al. (2012) Arch Intern Med 172(16), 1211 8
- 6. Reichlin, T. et al. (2015) CMAJ 187(8), E243 52;
- 7. Mueller, C. et al. (2016) Ann Emerg Med 68(1), 76 87
- 8. Mokhtari, A. et al. (2016) JACC 67(13), 1531 40
- 9. Twerenbold, R. et al.(2019) J Am Coll Cardiol 74(4), 483 94
- 10. Chew, D.P. et al. (2019) Circulation 140(19), 1543 56
- 11. Shiozaki, M. et al. (2017) Int J Cardiol 249, 32 5
- 12. Stoyanov, K.M. et al. (2020). EHJ ACC 9(1), 39 51
- 13. Roffi, M. et al. (2016). Eur Heart J 37(3), 267 315
- 14. Elecsys Troponin T-hs and Troponin T hs STAT method sheets (2021). Product numbers 09315322 190, 09315349 190, 09315357 190

Distributor of Roche Diagnostics "Concern-Energomash" CJSC 26/8 Azatutyan str., Yerevan, Armenia Tel.: 011 87 87 17 info@c-e.am | www.c-e.am

From prolonged time to diagnosis

to accelerated diagnosis of AMI

Faster, evidence-based algorithms for treatment decisions based on the 2020 NSTE-ACS Guidelines from the European Society of Cardiology

WHERE CARE LEADS

Biomarkers for the diagnosis of ACS

Key update from the 2020 NSTE-ACS Guidelines from the ESC

2

If the clinical presentation is compatible with myocardial ischaemia, then a **dynamic elevation** of cTn >99th percentile of healthy individuals indicates Myocardial Infarction (MI)¹

As an alternative to the ESC 0/-1h algorithm, it is recommended to use the ESC **0/2-h algorithm,** if an hs-cTn test with a validated 0/2-h algorithm is available (Class I B)1

6

4

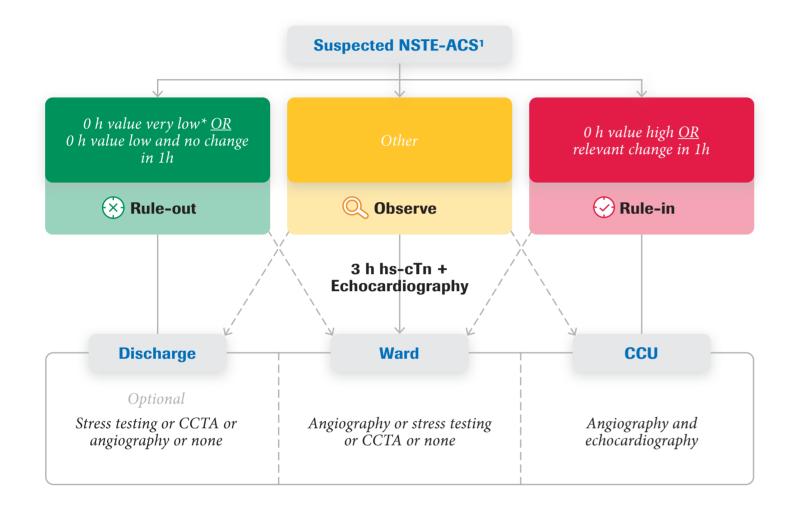
While cTnT-hs and hs-cTnI have comparable diagnostic accuracy, cTnT-hs has greater prognostic accuracy1

ACS, acute coronary syndrome; ECG, electrocardiogram; ESC, European Society of Cardiology; MI, myocardial infarction; NSTE-ACS, non ST-elevation acute coronary syndrome

Measurement of a **biomarker** of cardiomyocyte injury, preferably **hs-cTn**, is mandatory in all patients with suspected NSTE-ACS¹

The ESC 0 /1-h algorithm

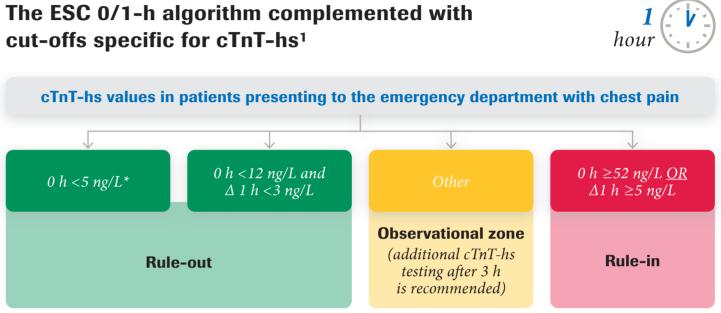
is now recommended as the first-choice diagnostic algorithm (Class I B)1



The 0/3-h algorithm recommendation was downgraded to a Class IIa B recommendation¹

Biomarkers should always be used in combination with clinical assessment and 12-lead ECG in the diagnosis, risk stratification, and treatment of patients with suspected NSTE-ACS¹

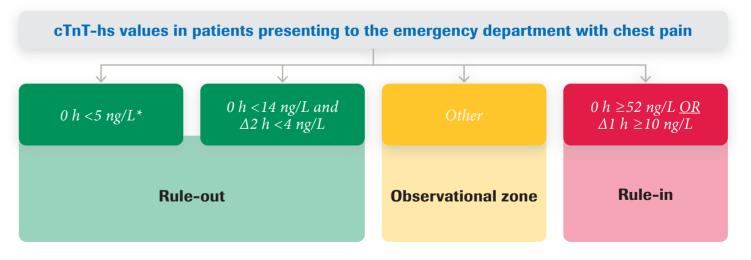
The ESC 0 /1-h algorithm to accelerate the time to diagnosis and to drive immediate therapeutic consequences for the diagnosis of ACS



0/1-h algorithm benefits **Reduce length of Reduced overall length** Lower hospital & overall observation time² of ED stay² AMI diagnostic cost^{2,3}

Risk of MI at index visit was <0.3% for the rule-out group, ~10% for the observe group, and >65% for the rule-in group; Risk of 30-day MACE was <0.5% for the rule-out group, 15-20% for the observe group, and >70% for the rule-in group. * If chest pain onset was >3 h. AMI, acute myocardial infarction; CCTA, coronary computed tomography angiography; CCU, coronary care unit; ECG, electrocardiogram; ED, emergency department; ESC, European Society of Cardiology; MACE, major adverse cardiac event; MI, myocardial infarction; NSTE-ACS, non ST-elevation acute coronary syndrome

The first algorithm to rule-in or rule-out AMI within 0 to 1 h using cTnT-hs is confirmed by the 2020 ESC **Guidelines**


cut-offs specific for cTnT-hs¹

New in the guidelines: The ESC 0/2-h algorithm

Indicated as an alternative to the ESC 0/1-h algorithm

The ESC 0/2-h algorithm complemented with cut-offs specific for cTnT-hs¹

* Applicable for chest pain patients with onset longer than 3 h

AMI, acute myocardial infarction; ECG, electrocardiogram ESC, European Society of Cardiology

Caveats to consider with rapid algorithms¹

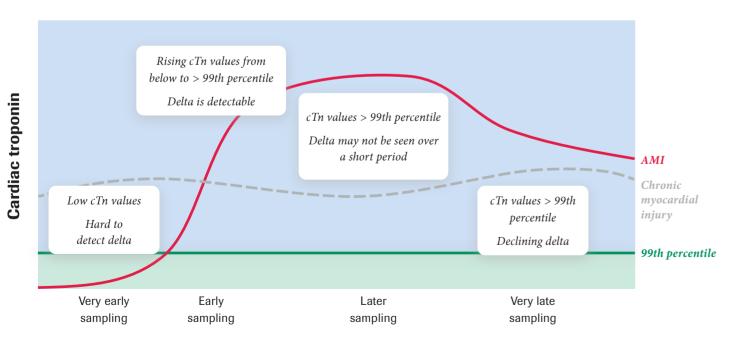
Practical guidance for the implementation of the ESC 0/1 cTnT-hs algorithm¹

Algorithms should always be interpreted in conjunction with clinical and ECG findings¹

Troponin release is timedependent. An additional cTn measurement at 3 h should be considered in patients presenting < 1 hafter chest pain onset and triaged towards rule-out¹

Late increases in cTn concentrations have been described. Serial cTn testing should be carried out if clinical suspicion remains high or in patients with recurrent chest pain¹

Collect blood samples for hs-cTn measurements at admission (0 h) and 1 h later¹



The exact time of 0 h blood draw should be recorded to accurately estimate the time window (±10 min) of the 1 h blood draw¹

Take note: Early measurements may seem unnecessary in some patients.* However, evaluating troponin dynamics early accelerates the process of ruling in and ruling out MI.

Assessing the rise and/or fall of cTn levels can help differentiate AMI from other conditions associated with cardiomyocyte injury⁴

Time from onset of symptoms (h)

Timing of the blood draws and time of clinical decision differ

An important point to consider when using the 0/1-h algorithm

The ESC 2020 NSTE-ACS Guidelines recommend the measurement of cardiac troponins with high-sensitivity assays immediately after admission. The results should be available within 60 minutes of blood sampling (Class I, Level B)¹

The ESC 0/1-h algorithm is used irrespective of the local turnaround time. In the 0/1-h algorithm, 0 h and 1 h refer to the timepoint at which blood is taken. To calculate the earliest timepoint for clinical decision, the local TAT should be added to the time of blood collection¹

Compared to other algorithms, the 0/1-h algorithm possesses clinical and economic benefits, independent of the local TAT¹

Quicker diagnosis + shorter hospital stay = reduced resource utilisation³

The team should not wait for other clinical details or pending results1

In case the 1 h $(\pm 10 \text{ min})$ collection is not possible, blood should be collected at 2 h and the 0/2-h algorithm should be used1

Fewer blood draws, ECGs and imaging studies are required³

The performance and safety of rapid rule-out using the ESC 0/1-h algorithm with cTnT-hs is confirmed by multiple studies⁵⁻¹¹

In three prospective studies and more than 8000 patients interventional studies confirm the excellent performance of the 0/1-h algorithm using cTnT-hs^{9,10,12}

Publications and trials using cTnT-hs values for patient assignment to the rule-out zone

	Study		All-cause mortality or MACE in the rule-out zone
--	-------	--	--

0 h <12 ng/L and Δ 1 h <3 ng/L

APACE ⁵	100%	30 days all-case mortality: 0.2% 2 years all-cause mortality: 1.9%			
APACE ⁶	99,9% (99.3–100%)	30 days all-case mortality: 0% 2 years all-cause mortality: 1.1%			
TRAPID-AMI ⁷	99.1% (98.2–99.7%)	30 days all-case mortality: 0.1% 2 years all-cause mortality: 0.7%			
Mokhtari et al.8	NPV* for 30 days MACE: 99.5% (98.6– 99.9%)*	30 days MACE*: 0.5% and 0% without UA			

0 h <5 ng/L or 0 h < 12 ng/L and Δ 1 h < 3 ng/L

patients suspected of ACS

APACE ⁹	100%	30 days and 1-year all-case mortality: 0.2%		
RAPID-TnT ¹⁰	99.6% (99.0–99.9%) for 30 days death or MI	30 days all-case mortality and MI: 0.4%		
Shiozaki et al.11	100% (96.8–100%)	30 days all-case mortality: 0%		

The safety of the ESC 0/1-h algorithm using cTnT-hs is confirmed by the low incidence of 30-day MACE or mortality in rule-out patients*

	Twerenbold R et al. ⁹
30-da	30-day MACE rate:
0.5%	0.2% in the rule-out group
0.3 d	0.1% among patients triaged to outpatient care [†]

Chew DP et al.¹⁰

ay all-cause death or MI rate:

in the rule-out group

3% among patients lischarged directly from the ED

8

The high NPV (99.1-100%) of the 0/1-h algorithm and the low 30-day mortality (0-0.4%) in the rule-out zone **confirms** the **safety** of this approach for **early discharge**

cTnT-hs can be used as an aid for early discharge and out-patient management for

* When using the extended algorithm adding ECG and patient history as recommended by the ESC guidelines. ACS, acute coronary syndrome; CI, confidence interval; ECG, electrocardiogram; NPV, negative predictive value; MACE, major adverse cardiac event; MI, myocardial infarction; UA, unstable angina

confirms the safety of this approach for **early discharge**

0 h < 5 ng/L OR

0 h < 12 ng/L and

 $\Delta 1 h < \overline{3} ng/L$

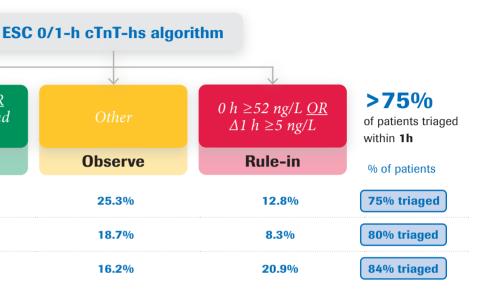
Rule-out

61.8%

72.1%

62.9%

Twerenbold R et al.9


Stovanov KM et al.¹²

(n=2296)Chew DP et al.¹⁰

(n=3288)

(n=2525)

* Rule-out group indicates patients recommended to be ruled-out for MI by the algorithm; † Outpatient care indicates patients in which the final management decision made was direct discharge from the ED CI, confidence interval; ED, emergency department, ESC, European Society of Cardiology; MACE, major adverse cardiac events; MI, myocardial infarction

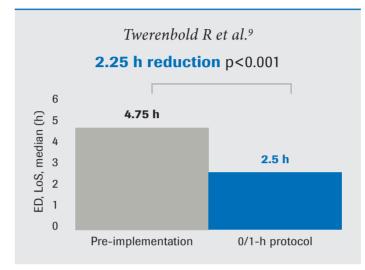
The ESC 0/1-h cTnT-hs algorithm triages over three-quarters of ED chest pain patients: 75-84% of patients triaged within 1 hour (plus lab time)

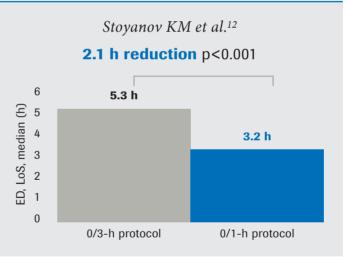
*Stoyanov KM et al.*¹²

30-day mortality rate:

0.4% in the rule-out group 0.08% among patients triaged to outpatient care[†]

The low 30-day MACE rate (0.1-0.3%) among patients discharged directly from the ED


The performance of the ESC 0/1-h algorithm using **cTnT-hs is robust in important patient subgroups** (e.g. early presenters, sex, age)⁹

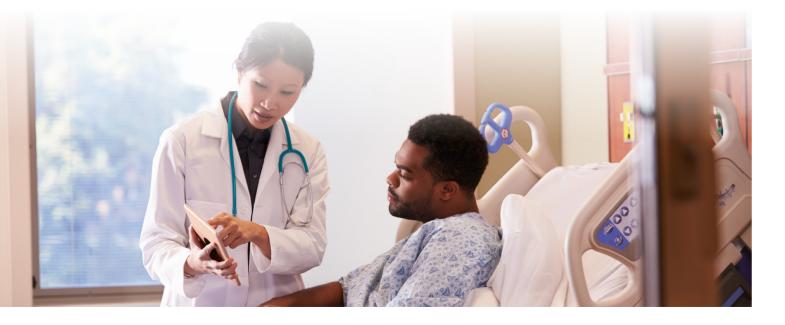

Forest plots illustrating efficacy and safety of the ESC 0/1-h cTnT-hs algorithm in pre-defined subgroups⁹

			Performance			30-day MACE-rates		
			Proportion rule-out	t/in	Proportion outpatien	s In rule-out group	In outpatients	
СРО	≤3 hours >3 hours	(n=819) (n=1477)	80% 72% p<0.001		75% p=0.001	0.0% ◆ p=0.171 0.3% ◆	0.0% ◆ 0.1% ◆ p=0.435	
Sex	Females Males	(n=819) (n=1477)	81% p<0.001 71%		75% 68% p<0.001	0.3% • p=0.372	0.2% ◆ p=0.202 0.0% ◆	
Age	>65 years >3 hours	(n=878) (n=1418)	57% 86% p<0.001	•	58% p<0.001 ↔	0.3% • p=0.688 0.2% • p=0.688	0.0% ◆ 0.1% ◆ p=0.501	
All Patients		(n=2296)	75%		71%	0.2%	0.1%	
			40 50 60 70 80	90 10	00 30 40 50 60 70 80	0100 0.0 0.2 0.4 0.6 0.8 1	1.0 0.0 0.2 0.4 0.6 0.8 1.0	

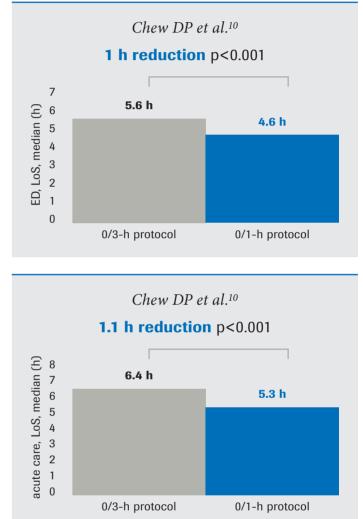
The ESC 0/1-h algorithm using cTnT-hs reduces LoS in ED & acute care^{9,10,12}

Median reduction of 1-2 hours of length of stay* compared with standard of care^{9,10,12}

Improves ED patient flow


Shortens length of stay (compared to 0/3-h algorithm) without compromising safety

- Reduces ED LoS by 1.0 2.25 h^{9,10,12}
- Reduces acute care LoS by 1.1 h¹²


*Comparisons are with pre implementation / standard algorithm. AMI, acute myocardial infarction; ED, emergency department; ESC, European Society of Cardiology; LoS, length of stay; NPV, negative predictive value

For early presenters (CPO \leq 3 h), the 0/1-h algorithm triaged **80%** to rule-out or rule-in, with a 0% 30-day MACE rate in rule-out patients9

CPO is the time from onset of chest pain symptoms to patient presentation in the EDCPO, chest pain onset; ED, emergency department; ESC, European Society of Cardiology; MACE, major adverse cardiac events

• Triages 75-84% of patients to rule-in OR rule-out within 1 hour (plus lab time)^{9,10,12} Rule-out of AMI possible in 62-72%^{9,10,12} of patients with a NPV of 99.6%⁹

Significantly increases ED discharge rates compared with the standard of care^{9,10,12}

Conclusions from the three studies^{9,10,12}

The implementation of the ESC 0/1-h algorithm using cTnT-hs¹³

Biomarkers as tools for prognostication and risk assessment

cTnT-hs is safe

- Low 30-day event rate 0.2 0.5% (MACE, all cause mortality and MI, or mortality)^{9,10,12}
- 0.08% 30-day mortality in patients triaged to out-patient care¹²

for the estimation of prognosis (Class | B)¹

cTnT-hs and hs-cTnI possess comparable diagnostic accuracy, however, cTnT-hs has greater prognostic accuracy¹

cTnT-hs is feasible

- 94% algorithm adherence⁹
- 45 minute median reduction in the time between initial and second cTnT-hs sample¹²

cTnT-hs does not increase the use of diagnostic resources^{9,10,12}

- Significant reduction in functional cardiac testing¹⁰
- No increase in coronary angiography^{10,12}

hs-cTn adds prognostic information with regards to short- and long-term mortality to clinical and ECG variables1

The higher the hs-cTn levels, the greater the risk of death. Serial measurements can be used to **detect peak levels** of cardiac troponin and risk stratify patients with established MI¹

BNP/NT-proBNP, serum creatinine and eGFR also affect prognosis and should be measured concomitantly¹

Beyond its diagnostic role, it is recommended to measure hs-cTn serially

Conclusions

Elecsys[®] Troponin T hs intended use¹⁴

The 0/1-h algorithm (best option, blood draw at 0h and 1h) and the 0/2-h algorithm (second best option, blood draw at 0h and 2 h) are the preferred rapid algorithms and are recommended with a Class IB recommendation¹

Both algorithms have **data driven assay-specific cut-offs**, derived and validated to achieve predefined performance characteristics, for both rule-out and rule-in of AMI, justifying immediate therapeutic consequences¹

Multiple hs-cTn assays can be used with both algorithms and are supported by real life studies documenting safe and efficient implementation¹

Г			
┢		Ľ	

The 0/1-h algorithm using cTnT-hs is validated in numerous prospective trials^{9,10,12}

Roche cTnT-hs is the first hs-cTn assay to introduce a rapid rule-out claim for early discharge and out-patient management for patients suspected of ACS14

Supported by numerous (> 1300) publications and has multiple intended uses

1. Aid in diagnosis

Aid in the differential diagnosis of acute coronary syndrome to identify necrosis, e.g. acute myocardial infarction14

2. Rapid rule-out Aid for early discharge and out-patient management for patients suspected of acute coronary syndrome (ACS)¹⁴

3. Risk stratification - ACS Risk stratification of patients presenting with acute coronary syndrome14

4. Risk stratification - chronic renal failure Cardiac risk stratification in patients with chronic renal failure¹⁴

ACS, acute coronary syndrome; AMI, acute myocardial infarction; MI, myocardial infarction; MINS, myocardial injury after noncardiac surgery; PMI, perioperative myocardial infarction

5. Selection of therapy and intervention

The test may also be useful for the selection of more intensive therapy and intervention in patients with elevated levels of cardiac troponin T¹⁴

6. Perioperative use

To predict the perioperative risk of major adverse cardiac events and for the aid in diagnosis of (MINS) and PMI in non-cardiac surgeries14

7. General population

To aid in stratifying the long-term risk of cardiovascular death, myocardial infarction, coronary revascularization, heart failure, or ischemic stroke and all-cause mortality in asymptomatic individuals14