For over 130 years, Toshiba has led the world in developing technology to improve the quality of life. This Made for Life™ commitment is reflected in our family of leading-edge imaging systems for MRI, CT, ultrasound, cath labs, X-ray and nuclear medicine.

From creating our first X-ray tube in 1915 to introducing the first Dynamic Volume CT Scanner in 2007, Toshiba continues to build upon our legacy with technological innovation that improves patient care while providing lasting quality for a lifetime of value.
Experience the power of advanced system performance

CC-i uniquely combines outstanding patient access, coverage and a cardiovascular flat panel detector for efficient procedures and distortion-free high resolution images. The advanced ergonomic system design and one touch automation provide a more comfortable, productive working environment to improve overall examination time.

More power and control for patient treatment

With the ability to conduct a wide range of procedures faster and more accurately, CC-i gives cardiologists a more powerful and efficient tool for diagnosis and treatment.

- Acquire higher-resolution images faster and experience unparalleled patient access with the exclusive dual-track, ceiling-mounted C-arm design.
- Visualize fine vasculature plus achieve fingertip-to-fingertip and head-to-toe coverage with unique component positioning.
- New generation filter made it possible the reduction of noise with high spatial resolution and less lag. The new filter enhances high-definition images of small devices and structures (Super Noise Reduction Filter: SNRF).
- Easily adjust dose levels to acquire the highest quality images using convenient tableside controls.
- Improve patient and department workflow with multi-tasking functionality to simultaneously acquire, post process, archive and store data.
- Enhance productivity with all major DICOM services classes to rapidly access images and information.
Boost clinical efficiency with unprecedented patient access

Physicians experience new levels of precision, flexibility and productivity with the unique C-arm positioning. This advanced system design enables superior access and coverage to accomplish cardiovascular imaging.

Unique motion and anatomical coverage
Precise, high-speed operation is complemented by the world’s first double-track C-arm that provides extended lateral motion to enhance interventional examinations and pacemaker placement.

- Accomplish head-to-toe and fingertip-to-fingertip coverage without compromising image quality
- Improve productivity with an overall C-arm speed of up to 20 degrees per second in any direction
- Achieve fast and accurate positioning, even at extreme angles, with rapid C-arm rotation and free-angle movement
- Easily acquire steep angulations such as those required for the spiderview used in cardiovascular angiography

Unparalleled flexibility and access
CC-i accommodates a wide range of patient sizes and gives the operator unparalleled flexibility and access to the patient.

- Optimize difficult catheterization approaches by working in any desired relationship to the patient
- Transradial approaches are simplified with extensive right-left coverage and use of the catheter table
- Access patients from any direction, without obstruction, with 270 degrees of isocentric C-arm rotation
- Anesthesiologists and other specialists have enhanced patient access with multi-directional C-arm positioning
- The robust table weight capacity readily accommodates heavier patients
Enhance diagnosis and treatment with exceptional image quality

CC-i incorporates unique tables side dose management tools with an advanced flat panel detector, robust image processing capabilities and unique X-ray tube technology to deliver outstanding images.

High definition cardiac detector
The flat panel detector design and powerful software allow CC-i to deliver superior high resolution diagnostic and interventional images.

- Consistently acquire distortion-free images with uniform brightness
- Easily visualize small details with less noise in dynamic or static mode
- Display intricate blood vessels and small devices such as guide wires

Powerful image processing
A real time image processing function applied to fluoroscopic and radiographic data automatically enhances overall image quality, delivering more image contrast and detail without operator intervention.

- Reduce noise and enhance visualization of small structures and devices with Dynamic Pattern Recognition and Compensation Filters
- Conveniently and easily record fluorographic studies using the powerful INFX-8000C digital processor
- Program user imaging preferences for radiographic and fluoroscopic image display

Advanced Image Processing (AIP) provides superb image quality for visualization of vessels and device.

- Digital Pattern Recognition Filter (DPRF)
- Advanced Digital Compensation Filter (ADCF)

Stable Imaging Technology
- Super Noise Reduction Filter (SNRF)

Noise Reduction Technology
- Auto Beam Filter function
- Auto Dose Control function

Dose Reduction Technology

RAD/Caudal view of a left coronary artery injection demonstrating severe stenosis of the LAD branch.
Complete examinations with improved efficiency and confidence

Efficient tablesie control
The ergonomic and tactile tablesie controls (including control of the digital processing functions) allow easy, anatomy-based positioning of the C-arm. The tablesie Hyperhandle provides instinctive control over movement, at speeds up to 20 degrees per second, to facilitate rapid positioning in any direction.

- A single unit control allows selection of up to four levels of fluoroscopy dose
- During image review, a single keystroke enables system setup from any selected image
- Automated functionality includes immediate review after acquisition and image archiving without interruption
- Tablesie access to key functions is easily achieved through a specially designed graphic user interface

CV-3D™ plus designed for enhanced coronary analysis (option)

- When combined with distortion-free, flat panel images, sophisticated 3D algorithms deliver precise quantification
- The intuitive graphic display makes it easy to use and access software features for measurement and vessel analysis
- Advanced algorithms automatically eliminate foreshortening
- Bifurcation quantification includes both the side branch and main branch
- Software achieves 3D display and analysis from 2D angiograms

Intuitive tablesie controls provide quick, easy patient access, and the ergonomic Hyperhandle provides all exam functions from tablesie.

Representative reference images can be displayed on the reference monitor as a thumbnail. The images can be easily selected by mouse operation.

The robust display of key parameters includes proximal, distal and minimal luminal diameters.

Stent selection and planning supported by 3D information. (Stent Planner)

Visual-enhancement for device (Stent Optimizer)
Dose-reduction technology for the patient and staff

X-ray beam filter
Toshiba’s beam filtration can dramatically reduce absorbed patient dose and radiation scatter. At tableside, clinicians can select the mode of choice to limit dose and optimize image quality.

Variable dose mode
With the touch of a tableside button, the operator can choose from four pre-programmed fluoroscopy modes. Different combinations of pulse rates, dose level, and image processing parameters optimize various study protocols.

Virtual collimation
After fluoroscopy, virtual collimation uses software to simulate collimator and beam filter positions. This lets operators adjust collimation without additional fluoroscopy, further reducing radiation dose.

Electronic zoom
Electronic zoom digitally enlarges images in real time during fluoroscopy, without increasing dose. This eliminates the need to use smaller fields of view on the detector for magnification purposes, which would increase the dose required.

Fluoroscopic acquisition
Operators can capture still and dynamic images for future reference during fluoroscopy. These archived images represent an alternative to fluorography and a major reduction in dose exposure.

F-STORE: Fluoroscopic images for up to the last 10 seconds can be recorded on the image disk after fluoroscopy is completed.

Dose display
Radiation dose can be monitored in real time. The operator can observe dose levels on a digital display in the examination room.

Clinicians enjoy the added advantage of increased productivity and patient care with complete tableside control.
Advanced system design drives higher productivity

CC-i is equipped with Sequential Navigation for physicians to quickly “navigate” through an exam and execute memorized angles, projections and acquisition parameters. One touch of a button is all it takes to navigate through the preferred settings for each exam type. Operators have the freedom to change any parameter throughout the procedure without disrupting Sequential Navigation.

- CC-i can store virtually any number of customized exam types for any number of operators. This unique Toshiba feature dramatically boosts productivity.

Customizable exam parameters include:
- C-arm position and angulation
- Table height
- Source-to-image distance
- Compensation filter settings
- Acquisition rate
- Image size
- Field of view
- Generator settings
- Digital processing

More efficient exams with parallel processing and true multi-tasking

Simultaneously processing and transferring image data during acquisition yields quick, efficient exams. For example, during fluoroscopy and fluorography, operators can prepare for the next scheduled patient, process and save images from a previous (or current) study, and transfer or archive images to an associated network.

Process more patients in less time

For One Procedure

TIME SAVED

Infinia™-i

other models

For One Lab

patient workflow on Infinia-i

patient workflow on other models
Access to patient information with seamless network integration

CC-i comes standard with the six major DICOM Service Classes enabling efficient network integration. These DICOM features allow open access to patient information while reducing examination time and enhancing overall department workflow.

CC-i
- Dynamic viewing and flexible network integration permit rapid import and retrieval of images. Open communications with HIS/RIS provides rapid transfer of patient information.
- PACS/network storage: Provides online dynamic review of patient images. Storage and transfer of multi-modality images are handled at high speed.
- Presentations: Clinical data can be exported as PC format files for use in presentations.
- DICOM CD-R/DVD-RAM: Serve as long-term and portable storage media for valuable image data.

A typical system layout

Infinix-i
- Dynamic viewing and flexible network integration permit rapid import and retrieval of images. Open communications with HIS/RIS provides rapid transfer of patient information.
- Infinix-i: Dynamic viewing and flexible network integration permit rapid import and retrieval of images. Open communications with HIS/RIS provides rapid transfer of patient information.
- PACS/network storage: Provides online dynamic review of patient images. Storage and transfer of multi-modality images are handled at high speed.
- Presentations: Clinical data can be exported as PC format files for use in presentations.
- DICOM CD-R/DVD-RAM: Serve as long-term and portable storage media for valuable image data.